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Some General Properties of a Class of Semilinear
Hyperbolic Systems Analogous to the Differential-Integral

Equations of Gas Dynamics

HOWARD E. CONNER

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: Using a background of nonequilibrium theory for gas dynamics, we are in-
vestigating the general structure of a class of semilinear hyperbolic systems analogous to

the Boltzmann equations for a gas model with discretized velocity states. In this report we
develop the global existence of (nonnegative) solutions associated with nonnegative initial

data. We also present some auxiliary results on a linear conjugacy of systems and on mono-
tonicity and smoothness properties of general (local) solutions.

1. INTRODUCTION

Using a background of nonequilibrium theory for gas dynamics, we are investigating the gen-
eral structure of a class of semilinear hyperbolic systems of equations analogous to the Boltz-
mann equations for a gas model with discrete velocity states.

We begin by first deriving a class of systems, called Boltzmann systems, and then enlarging
this class to all systems equivalent to some Boltzmann system. The equivalence between systems
is based on the notion of linear conjugacy over the velocity states.

Within this general class we want to locate the systems having structural properties suffi-
cient for a development patterned after a kinetic theory for gas dynamics. The development
of kinetic and fluid descriptions for gas dynamics and the problem of finding an interpolation
theory connecting them is discussed in a companion report [1].

In particular, we want to locate those systems for which (a) the global existence of non-
negative solutions is guaranteed, (b) an associated H-functional decreases (monotonically)
with increasing time to a constant value, (c) a global solution converges with increasing time
to an appropriate steady-state solution, and (d) there are (easily) associated conservation equa-
tions analogous to those for continuity, fluid motion, and heat flow in gas dynamics.

2. SUMMARY

Section 3 contains an idealized derivation of Boltzmann systems. It is used as a guide for
understanding the restrictions imposed on the general systems. Section 5 contains the auxiliary
work on linear conjugacy and equivalence. Linear conjugacy is also used to derive the related
conservation equations. Section 6 contains some auxiliary work on monotonicity and smooth-
ness properties of local solutions. It also contains the principal result on the global existence
of (nonnegative) solutions associated with nonnegative data.

Note: Dr. Conner holds joint appointments at the NRL Mathematics Research Center and the University of Wisconsin.
NRL Problem B01- I1; Project RR 003-02-41-6153. This is a final report on one phase of the problem; work is continuing on other

phases. Manuscript submitted January 7, 1970.
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3. BOLTZMANN SYSTEMS

Background

Let us partition the velocity space of a dilute gas system into many distinct and nonover-
lapping cells: I,, ... , ,. At each instant of time t we label each molecule in the system with
the index of the cell containing its velocity point at time t. We then let ni(t,x) be the number
of molecules which at time t are in the spatial cell A containing x and have velocity points in
the cell I. To continue, we use a technique very common in the construction of continuous-
parameter Markov chains.

Granted that we can obtain constants Vjk > 0, 1 - j,k - n, giving the collision rate between
molecules of type j and k over the epoch dt and granted that we can find constants 0 S Fjk S 1,
1 S i,j,k < n, giving the probabilities for a j-molecule to have its velocity point scattered from
Ij to hi through collision with a k-molecule, we declare Fjk v jkdt to be the probability for a (j,k)-
collision to generate a (j,i)-scattering in unit time dt.

Setting the time rate of change in ni equal to the sum of the changes in ni through streaming
and collisions, we have

a =-vi gradx nT + E (Fkvjknjnk - Fkviknink), 1 n i ,
j,k=l

where vi is some average velocity point in i. This is written in the more general form

ani n
a -vi gradx ni + E B'k njnk, i n,

at jk= I

with

B'. k = Vjk(Fpk + fkj - aij - aik)

Examples

By specifying the admissible velocity states, a choice of collision transformations, and the
associated probabilities, we construct several two-state models.

With v and v' = 1 or -1, we define the following scattering laws:

elastic scattering: (v,v') (v',v) with probability 1.

uniform scattering: (v,v') (vv',v) or (v,vv') with equal probabilities.

collinear scattering: (v,v) = (-v,-v) with probability 1.

Assuming the particles are streaming on R and choosing the collision rates Vjk = 1, we
obtain the following examples:

elastic uniform collinear
scattering scattering scattering

au, + a-,= 0 U2 - UU2 U2-U
2

at ax U22 1

0112 aU2 2 2 2
at ax I2 U 2
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Definition of an nth-Order Boltzmann System

Using these models as a pattern, we make the following definition of an nth-order Boltzmann
system.

Definition 1. The system of equations

aui + v ui = E Bjikujuk, 1 i - n,
Oa ,k

is called an nth-order Boltzmann system with velocity states v = (vi,...,v 5 ) and collision form
B = (B 1,...,Bn), provided the matrices Bi satisfy the following:

(a) Bi is symmetric

(b) B. k 0, all i, k f, i
S 0, j or k = 1,

(c) EBjk= 0, all j,k

(d) E Bj = 0, all i.
j,k

The significance of properties c and d should be explained. For example, d implies the
positive ray through the vector 1 (all components equal to 1) is a ray of critical points for B;
i.e., B(cl) = 0, for all c - 0. Similarily, c implies the covector 1 annihilates the range of B:
i.e., 1 Bi ( ) = 0, for all e in Rn. We can rephrase c and d in this more general form:

(c) existance of a positive critical point in Rn for B.

(d) existance of a positive covector annihilating the range of B.

Conditions c and d are redundant. In a recent paper on ordinary quadratic systems, Jenks [2]
has announced these and related results.

4. NOTATION, TERMINOLOGY, AND CONVENTION

We use the notation C(X,Y) to denote the class of continuous mappings from a Banach
space X into another, Y. The Banach space associated with C(X,Y) by imposing the classical
norm is also denoted by C(X,Y) or just C. For example, C(R,Rn) is the space of bounded
uniformly continuous Rn-valued functions f on R with or without l1fl2

= max [il being imposed,

depending on the context. The classical norm of a scalar f (i.e., f in C(R,R) ) is denoted If l.
The class of linear operators from X into Y is denoted by L (X,Y). The Banach space associated
with L (X,Y) by imposing the operator norm is also denoted by L (X,Y). The open ball in C=
C(R,Rn) with radius r, centered at f, is denoted by Br(f); its closure by Br(f).

The cone of positive elements in Rn associated with the partial ordering 6 = ai

1 S i S n, is denoted by R+. The cone of positive elements in C (R,Rn) associated with the order-
ing f g g= fi(x) - gi(x) , 1 - i - n, x in R, is denoted by A; its interior, by AO. Amap F
of C(R,Rn) into itself is called positive (strictly positive) if F(A) C A (AO) and, similarity
for F of RI into itself. Additional information on partial orderings and positive cones, positive
and monotone maps, etc., can be found in Ref. 3.

3
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We shall call an equicontinuous semigroup of class C0 a semigroup.
The canonical imbedding j of Rn into C(RRn) is defined by a - ja (x) = a, all Xe R.
The remainder of our notation is chosen to conform to ordinary usage as evidenced in

standard texts such as Refs. 4 and 5.

5. SOME PROPERTIES OF GENERAL QUADRATIC SYSTEMS

In this section some qualitative characteristics of the Boltzmann systems of Definition 1
are examined within the larger class of general systems

aui +n Uj n
-at +Eaij ax = I Qj~k uj Uk

j=I j,A~I

or, in the equivalent vector form,

u + Aau = Q(u), (2)

it: R, X R -Rn

where

Q = (q, .. ,q,,), q(u) = EQjk uj u,, 1 < ijk < n, u in Rn.
j ,k

(Also, it is the vector whose ith component is aui/at; and au is the vector whose ith component
is aui/ax.)

In the special case of spatial homogeneity (au -0), Eq. (2) reduces to a system of ordinary
differential quadratic equations. In addition to the cited work of Jenks the qualitative work of
Markus [6] is particularly relevant.

Markus developed a necessary and sufficient condition for the linear conjugacy of two ordi-
nary quadratic systems. Using the forms Qi to construct a (nonassociative) algebra A (Q),
Markus transferred the question of linear conjugacy between two systems to the question of
isomorphism between two algebras.

As an immediate application of this work we can obtain a complete set of (abstract) con-
jugacy invariants over the full linear group L (n) for a general quadratic system, namely, the
Jordan form for the streaming matrix A and the Markus algebra A (Q) for Q. The construction
of a Markus algebra associated with the quadratic forms (construction of a Markus algebra
A (Q) for Q) is given in the following:

Let e,, ... , e,, be a basis for V" (linear n-space). A multiplication o is defined over VI' using
the rules

ejoel j. ei.

Then, Vn equipped with the multiplication o is a Markus algebra A (Q) for Q.
We will refer to as (M) the conjugacy invariants mod L (n) for general quadratic systems:

Two systems (A,Q) and (A,Q) are conjugate with respect to T in L(n) through the mapping
u = TW if and only if (a) A and B are conjugate using T:A = T-IBT and (b) the algebras A (Q)
and A (Q) are isomorphic using T.

Since a proof of (M) is easily made by performing the calculations, we defer from presenting
one and refer the interested reader to the work of Markus [6, p. 186].

4
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The result stated in (M) can be used to transform a system into an equivalent system (over
L(n)) with standard form. For example, using an anistropic scaling followed by a diagonal
rotation (a diagonal matrix with +1 or -1 entries), a system with a critical point t in Rn can be
transformed into an equivalent system with critical point 1. More generally, we have the following

COROLLARY: Suppose two quadratic systems (A ,Q) and (A ,Q) are conjugately related
through the mapping u = TY, T in L(n). Then f = T-If and 7i = T'-, areacritical vector
and annihilating covector for (A,Q) if and only if ( and 77 are for (A,Q) (re:the discussion
after Eq. (1)).

This corollary shows we must modify our definition of Boltzmann systems if we want to
include the entire class of general systems conjugately related to Boltzmann systems. There-
fore we make the following amended definition.

Definition 2. A system given by Eq. (2) is called a kinetic system if it is equivalent over
L(n) to a system of the form

it + van = K(u),

where the Kjk satisfy properties a through c of Definition 1. We obtain an equivalent definition
replacing c with d.

Jenks [2;p. 503] has shown that any system K= {Kk} satisfying a through c of Definition 1
always has a critical ray in Rn. He has also shown that such a system has no critical ray con-
tained in the faces (boundary) of Rn if and only if K is irreducible. K is called irreducible if
for any partition of 1, ..., n into I and J there always exists KAk # 0 with i in I and j,k in J.

Even though the concept of conjugacy mod L(n) is useful, it is too sensitive for a generic
study of kinetic systems. An examination of the two-state models tabulated at the end of the
Examples subsection of Section 2 illustrates this sensitivity: the algebra for an elastic scatterer
has a trivial multiplication law, the algebra for a uniform scatterer has exactly one linearity in-
dependent nilpotent of order 2, and the algebra for a collinear scatterer has a basis of nilpotents
of order 2. All three systems fall into distinct conjugacy classes mod L (n). Furthermore, only
the collinear model is irreducible.

Using the previous work on conjugacy mod L (n), we can transform a kinetic system (Eq.
(2)) into an equivalent system which displays the associated "conservation equations." The
basic idea is that each covector a in Rn satisfying

n

E PKjk. = 0. all j,k,
i=1

annihilates the range of

K: e -K K( i) = K EK(,)A 
j,k

and generates a natural projection

n
is: C(RR-) - C(R,R), (i7Tf)(x) = P ifi(x).

1=I

These projections are analogous to the velocity moment projections defining the mass density,
average thermal mass velocity, and internal mass energy for the classical Boltzmann equation.

5
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One of our principle assumptions (Definition 1, property c) implies that the covector I is
always an annihilating covector for the range of K. There is nothing in these assumptions which
either prevents or implies the existance of additional annihilating covectors for the range of
K. Without any great loss in generality, we shall assume: (a) I is the only (up to a constant mul-
tiple) covector annihilating the range of K, and (b) the covectors VO = 1, VI, V2 , ... , Vn-',
Vk = (vn ,...,vn), are linearity independent.

Suppose we let T: Rn - Rn be the (nonsingular) linear transformation whose canonical
matrix has the covector Vk in the kth row, 1 - k - n; i.e., tkj = VJk-. Then, using the previous
work, we see that the original system is conjugate over T to the system

a 0
ax W2=

a
zi + a wi+=1 KjkWjWk, 2 - i n-1,

j,k

+ VjJ a Wi =E KnkwJwk

a j,k

KJk= d t*Kata ).I , t0 l

The first equation is the conservation equation for the system. Since

Wj = viui

the above system expresses the time derivative of the jth velocity moment of u in terms of the
spatial derivative of its (j + 1) th velocity moment and an "average" over the collision term,

E vWiKgn uin = K-(w).

6. GENERAL PROPERTIES OF SOLUTIONS

A kinetic (Boltzmann) map K is defined to be a map of C(RRn) into itself for which

K(f) = (K1(f),K 2(f),...,Kn(f)), Ki(f) = E KJk ff
j,k

and the Kjk satisfy conditions a-c (a-d) of Definition 1. A quadratic map Q is defined in the
same way, replacing KJk with Q1!k and not imposing restrictions b and c.

Using the Jacobian matrix of Q at f (aqj(f)laxi) and the mean value theorem for Banach
spaces, we can develop the following properties for Q: A quadratic map Q is of class C' on
C(R,Rn), with locally bounded derivatives dkQ, uniformly in k, and is a local Lipshitz map.

A velocity operator V is defined to be a (linear) map of C(R,Rn) into itself with Vf = (vifi,
... ,v,,,), for a given set v,, ... , v,, of velocity states.

The isotropic translation semigroup et' on C(R,Rn) is defined by (e1 8 )f = (fi(x+t),
.... fn(x+t)); the differentiation operator af = (afi/ax,...,afnIax), with domain D(a) con-
sisting of all f in C(RRn) for which af is in C(RRn), is the infinitesimal generator of e18.

6
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A velocity operator V generates an anistropic translation semigroup e"vS, (e-tva)f
(ft(x+vjt),...,f.(x+vnt),with Va as its infinitesimal generator, D(Va) = D (a).

Using the semigroup etvS and a variant of Duhamel's principle, we transform the dif-
ferential equations defining a kinetic system into the weaker (abstract) integrated system:
u: R+ C(RRn),

u(t) = (e-lVs)f+ (e-(t+s)va) K(u(s)) ds, R± - C(RRn), (3a)

u (0+) = fin C (R,Rn). (3b)

Replacing the semigroup e-'" with e-tAs and the kinetic map K with Q, we have the inte-
grated form of a general quadratic system.

The existence of local solutions and the continuous differentiability of these solutions with
respect to the initial data is given by

THEOREM 1. For each s in R+ and f in C(R,Rn) there exists an interval I, (= [s,s,]),
a ball Br = Br(f) and constant 0 < X < I such that

u(t) = (e-(t-s)Aa)f+ f (e-(t-r)Aa)Q(u(r)) dr (4)

has a unique continuous solution u: 1s X B~r Br C C(R,Rn) satisfying u(s,s,g) = g in Br.
Moreover, u is continuously differentiable in g on BAr.

Proof. A proof for all but the last assertion is easily made using a classical iteration scheme,
the local Lipshitzian character of Q, and growth estimates obtained from the Banach space variant
of Gronwell's inequality.

To validate the last assertion, we verify the existence of a map L: Is X B)r - L(C,C)
(C = C(R,Rn)), for which

Iu(t;s,g+eh) - u(t;s,g) - e Lthil = O(ejjhjt) (5)

uniformly on I. X BAr.

Since dQ is continuous and u(t;s,g) remains inside Br for t in I,, dQ|u(t;sg) is a uniform
Lipshitz map of I, X Bxr - L (C,C). Using this property, the methods outlined in the previous
paragraph provide a unique solution W: I, X C(R,R-) X Bxr - C(R,Rn) satisfying

w(t) = (e-(t-s)Aa)h + f (e-(t-r)Ad) [dQIu(r;s g)W(r) ] dr,

w(O+) = h.

We define L using Lth = w(t;h,g).
Denoting the vector in the left-hand side of Eq. (5) by 8(t;h,g), adding Eq. (4) for g and

g+Eh, and subtracting the corresponding equation for w(t;Eh,g), we have

t
8(t;h,g)= (e -('-r)II) [Q (u(r;Sug+Eh)) - Q(u (r;s,g))-EdQ 1(r-,,,)Lrh] dr. (6)

7
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We denote the bracketed expression by R(r;g,h). Since u(r;s,g+eh) and u(r;s,g) stay in-
side Br on I, for sufficiently small e, we can use the mean value theorem for Banach spaces,
the local Lipshitzian character of Q, and some manipulation of entries to show

IIR(r;h,g)II - a118 (r;h,g)lj + ebjjhII

on I, for some a,b > 0.
Taking norms in Eq. (6) and using the above estimate, we have

t

jj8(t;g,h)j f (al6 (r;g,h) 11 + Ebljhjl) dr

for sufficiently small e. This implies

jj8(t;g,h)jj (e(t-3)a-1)a

on I, x Br X C(RRn), completing the proof.
We shall need information about some regularity restrictions on the initial data which are

propagated by solutions.

THEOREM 2. Suppose u( ... ;s,f) is the solution of Eq. (6). Then u(t;s,f) is in C1 (R,Rn),
on I,, if f is.

Proof. Using again an iteration scheme, we can construct a sequence of continuous maps
U(n): Is X Br- Br C C(RRn), u(n)(O+) =f, converging to u uniformly on I1. An induction
argument shows U(n) is in D(a) ((Aa)U(n) is defined) and U(n) and (Aa)u(n) are equibounded
uniformly on I,. So, we can assume s-lim (Aa)u(n), n - -, exists in C(R,Rn). Since (Aa)
is a closed operator, u (t) = s-lim u1) (t) and the existence of s-lim (Aa) u() forces s-lim (A) U(n)
- (Ad)u; i.e., u(t) is in D(a) = C'(RR") on Is, completing the proof.

Since a quadratic operator Q is a C- map, we can repeatedly apply Theorem 2 and obtain
the following corollary.

COROLLARY: If f is in n D(an)C(R,R-), then so is u(t), on I,.

Nonglobal solutions u are easily constructed for the two-state models with either collinear
scattering [7,p. 18] or uniform scattering. This is done by looking for special solutions for which
the mass density u,(t,x) + u2(t,x) is constant in x for each t > 0. It is significant that the ini-
tial data u(0+) of these solutions is not in the positive cone A of C(R,R 2 ).

Kinetic maps have a natural and useful decomposition into the difference of two positive
maps. Writing the ith component Ki(g) of K(g) in the form

Ki(g) = ( K 2,gjg - Kig2) - ((-2) E K jgj) gi (7)jkf~~ ~ i j ij

and defining the maps P and V of C (R ,Rn) into itself by setting Pi (g) equal to the first quantity
in the right-hand side of Eq. (7) and Vi (g) equal to the last, we have K = P - V. Since Kjk _ 0

for j,k V! i and KJk - 0 for either j or k = i (Definition 1, condition b), we see that P and Vare
positive maps over the cone A.

LEMMA 1. Suppose K is a kinetic map on C(R,Rn). Then, given any bounded setE, there
exists a positive (diagonal) operator D on C(R,Rn) for which (K + D) is monotonic on E.
Since K(0) = 0, (K + D) is also a positive map on E.

8
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Proof. It is sufficient to restrict to f and g in some ball B, with f - g. Using the mean

value theorem for Banach spaces and the majorizability of the differentials dVIh for h in B,

we have

V(g) -V(f) = L(g -f) -- M(g -f),

where L is in the convex closure of {dVIh:f < h < g}, and where M majorizes {dVlI:h in B}

and is diagonal.
If D is a positive diagonal operator, we have

(K+D) (g) - (K+D)(f) - (P(g) -P(f)) + (D-M) (g-f).

The first term is in A. Choosing each dii to majorize max mij, the second term is also in A, com-
Ii

pleting the proof for the case when E is a ball. The extension to general bounded E presents

no difficulty.

Before showing that all solutions u(t;f), with positive initial data f, are positive and exist

for all t, we present a fundamental integral identity for the solutions of the kinetic systems of

Eqs. (3). Povzner developed this identity for use in his work on the existence and uniqueness

of solutions of a modified classical Boltzmann equation, [8,Lemma 3, p. 209].
The notation

n

(a,f3) = aEi,, a,, on Rn,

is used.

LEMMA 2. Suppose u: I x {f} C(R,Rn) is a continuous solution of Eqs. (3) with

existence domain I = [O,t (f) ]. Let D be a positive scaling operator, as in Lemma 1. Then the
validity of Eqs. (3) over I is equivalent to the validity of

f (h(x) ,u(tx) ) dx =f ((e-lDefV1h)(x),f(x)) dx

+ I ((e-(t-s)De(t-s)vah) (x), (K + D) (u(s,x) ) dsdx (8)
R O

over I for all h in Co(RR ). (For any class C of functions, CO denotes those with compact
support.)

Since Lemma 2 is the keystone in our development of the monotonicity and positivity

properties, we present an adaptation of Povzner's proof, applicable to the system of Eqs. (3).

Proof. We present only the essential ideas, letting the reader supply the appropriate in-

tegration theorems for connecting the chain of identities.
Multiplying Eq. (3a) by h in Co(R,R n) and integrating over R, we see that the validity of

Eqs. (3) over I is equivalent to the validity of

|(h(x) ,u(tx) ) dx =f| ( (evah) (x),f (x) ) dx

+ | ((e(' 5-h)) (x), K(u(s,x) ) dsdx, (9)

over I for all h in Co(RRn+).

9
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In the same way, multiplying Eq. (9) by p in C0 (I,R+), integrating over R+, and remember-
ing that Co(IR,)Co(RRn+) is dense in C0 (I x R,Rn), we see that the validity of Eqs. (3)
over I is equivalent to the validity of

|R (H(s,x) ,u(s,x) ) dxds = f ( (esvaH) (s,x) ,f (x) ) dxds

+ (e(-W)vH) (tx) dt, K(u(s,x))) dxds

over I for all H in Co (I x R ,Rn). The integration order dsdxdt is changed in the last term
to dtdxds.

Adding to the above the identity

|R+XR (| D(e(1-8)V'H) (t,x) dt, u(s,x)) dxds

|RXR (|, (e(ts-)v1H) (t,x) dt, Du (s,x) ) dxds,

we see that the validity of Eqs. (3) over I is equivalent to the validity of

f (Hu~(s,x) + f D(e()-SWOH) (t,x) dt, u(s,x)) dxds
R+ xRs

= f ((e'fVH) (tx), f (x) ) dxds
R+xR

+ | (| (e(1-)v1H) (tx) dt, (K + D) (u(s,x)) dxds (10)

over I for all H in C0 (I x R,RnI).
If H is related to H through

-H(sx) =-H(sx) + f De-(t-S)D(e(t-)V"H) (t,x) dt, (11)

then the reader can easily verify that

f (e(t-s)"H) (tx) dt = e-(t-S)D (e(t-s)VH) (tx) dt (12)

is true. Applying the operator a/as +_Va to Eq. (12), we obtain Eq. (I1); so that Eqs. (I1) and
(12) are equivalent forms for relating H and H. Using Eq. (10), we see that H is in C,(I x R,R'+)
if H is.

Substituting Eq. (11) into the left-hand side of Eq. (10), substituting Eq. (12) evaluated
at s = 0 into the first term of the right-hand side, substituting Eq. (12) into the second term of
the right-hand side, and returning to the original integration order dsdxdt, we see that the valid-
ity of Eqs. (3) over I is equivalent to the validity of
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f (H(t,x) ,u(t,x)) dxdt = J (e-tD(etvH) (t,x) ,f(x)) dxdt
R+xR R+xR

rr.

+ |RIXR f| (e(t-)D(e(t-)V"H) (t,x),(K + D) (u(s,x))) dsdxdt

over I for all H in C0 (I x R,Rn).
Since Co(I,R+) -Co(R,Rn) is dense in C0 (I X R,Rn), We see that the validity of Eqs. (3)

over I implies the validity of Eq. (8) over I for all h in Co(R,R+), completing the proof.
Using Lemma 2, we prove

THEOREM 3. Suppose u: I X Br(f) Br (f) C C (R,Rn) is a family of local solutions
of Eqs. (3), corresponding to initial datum in BAr(f) and existing over I = [O,t(f)]. Then
u (t;...) is monotonic on BAr(f) over I; i.e., u(t;h) 3 u(t;g) onI if h 3 g,forg,hinBx,(f).

Proof. Since K + D is monotonic on BAr(f) for a suitable positive scaling operator D
(Lemma 1), and since A (AO) is invariant under etva and etD for all t in R, we see from Eq. (8)
that u(t;h) - u(t;g) is weakly nonnegative over I. Therefore using the continuity properties
of u we have u(t;h) 3 u(t;g), completing the proof.

Since K(0) = 0, we have the immediate

COROLLARY: u(t) is in A over I if u(0) is.

Since e"v' cannot map the boundary of A into the interior AO, it is not possible to show a
strict positivity property for u(t) without placing some additional restriction on the kinetic
map K.

We now have sufficient information to show that local positive solutions, associated with
positive initial data, exist globally, Without attempting to give the most general result, we con-
sider only kinetic systems with irreducible kinetic maps.

We recall that a kinetic map K is called irreducible when the associated {KjJ.} satisfy the
following: for any partition I U J of the integers 1, ... , n, there exists KJ, # 0 with i in I and
j,k in J.

COROLLARY: IfK is irreducible andgis in A, then u(t;g), u(O;g) =g,existsforalltinR+.

Proof: Let 5 in R+ be a solution of K( ) = 0, normalized by

E t= 1.

Since K is irreducible, we can assume e is strictly positive [2,Theorem 4]. For convenience,
we let j be the canonical imbedding ofRn into C(R,Rn) given by q -jq,(x) -77, x in R. Then
{Xj,: A > 0} C A0 is a positive critical ray of K.

The statement of Theorem 3 can be easily extended to show that u(t;g) S u(t;xj) --=

over I, where X is so chosen that g - XjA. Since 6 is strictly positive, any g in A can be so bounded
above by some Xj~.

Since the inequality u (t;g) _- Xjf, for suitable choice of X, holds over any existence domain
for u(...;g), a standard argument for continuation shows that u(tag) exists for all t in R,,
completing the proof.

As evidenced from the reasoning employed in the last argument we can also make an as-
sertion about the behavior, t x, of the order-projection 7r of u(t) onto a unique (positive)
critical ray
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Oj = {Xje: X > 0, t in Rn+, K(e O, - 0

When K is irreducible (so that it has a unique positive critical ray), the order-projection

7:C(kR-) - Oj6 C C(RRn) is defined as follows: f- 7r(f) = X(f)je, X(f) is in C(R,R+),
when X(f) is uniquely determined by (X(f) - e) j < f - X(f) jo, e > 0.

Since X (g) I ji, g in A, is a (positive) steady-state solution, we have the following

COROLLARY: Suppose K is irreducible and f is in A. Then

U(tff) -- 7r(U(t;fi) f, t > 0,

and

IX(u(t;f)| I IX(u(s;f))I, t > s.

7. COMMENTS

The problem of global existence of solutions was previously worked out by Kolodner [7]

for the two-state collinear scattering model. Using special properties of a related Ricatti system,

he developed the global existence and showed the applicability of his methods to the n-state
generalization of collinear scattering; i.e., special K of the form

n
Ki(u) = E Aiju;, 1 S i a- n.

j=1

Kolodner also showed that

H(t,u) = f ui(t,x) log ui(t,x) dx

is an H-functional for collinear models with doubly stochastic generators {Aij}.
The problem of determining the appropriate H-functional for the generalized systems of

Eq. (2) is still completely unsolved. Some work has been done. Jenks [2] has found suitable
Liapunov functions for the quadratic differential systems considered in his work. Using these,
he established the convergence of (positive) solutions to steady-state values [2,Theorem 13].
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